Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In a physical system with conformal symmetry, observables depend on cross-ratios, measures of distance invariant under global conformal transformations (conformal geometry for short). We identify a quantum information-theoretic mechanism by which the conformal geometry emerges at the gapless edge of a 2+1D quantum many-body system with a bulk energy gap. We introduce a novel pair of information-theoretic quantities(\mathfrak{c}_{\textrm{tot}}, \eta) that can be defined locally on the edge from the wavefunction of the many-body system, without prior knowledge of any distance measure. We posit that, for a topological groundstate, the quantity\mathfrak{c}_{\textrm{tot}} is stationary under arbitrary variations of the quantum state, and study the logical consequences. We show that stationarity, modulo an entanglement-based assumption about the bulk, implies (i)\mathfrak{c}_{\textrm{tot}} is a non-negative constant that can be interpreted as the total central charge of the edge theory. (ii)\eta is a cross-ratio, obeying the full set of mathematical consistency rules, which further indicates the existence of a distance measure of the edge with global conformal invariance. Thus, the conformal geometry emerges from a simple assumption on groundstate entanglement. We show that stationarity of\mathfrak{c}_{\textrm{tot}} is equivalent to a vector fixed-point equation involving\eta , making our assumption locally checkable. We also derive similar results for 1+1D systems under a suitable set of assumptions.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
An official website of the United States government
